Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu, ${ }^{\text {a }}{ }^{*}$ Yang Qu, ${ }^{\text {b }}$
Zhong-Lu You, ${ }^{\text {a,b }}$ Zhen-Dong
Wang, ${ }^{\text {a }}$ Feng Yang ${ }^{\text {a }}$ and Min-Yu Tan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073,
People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.027$
$w R$ factor $=0.064$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-aminopyridine)bis(4-fluorobenzoato)cadmium(II)

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]$, the $\mathrm{Cd}^{\text {II }}$ atom is six-coordinated by four O atoms from two 2-fluorobenzoate anions, and two pyridine N atoms from the two 2-aminopyridine ligands, giving a severely distorted octahedral geometry. All of the O atoms and both the amine groups of the ligands contribute to form a network consisting of intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Recently, we reported an $\mathrm{Ni}^{\text {II }}$-benzoate complex with 2-aminopyridine (Xia et al., 2003). As a subsequent investigation, we prepared a $\mathrm{Cd}^{\mathrm{II}}-2$-fluorobenzoate complex, (I), with 2-aminopyridine and its crystal structure is reported here.

(I)

As shown in Fig. 1, complex (I) is an electronically neutral compound which is similar to our recently reported $\mathrm{Ni}^{\text {II }}$ complex (Xia et al., 2003). The $\mathrm{Cd}^{\mathrm{II}}$ atom in the complex, sixcoordinated by two imine N atoms from two 2-aminopyridine ligands and by four O atoms from two benzoate anions, exhibits an octahedral configuration. In the $\mathrm{CdO}_{4} \mathrm{~N}_{2}$ polyhedron, three O atoms ($\mathrm{O} 2, \mathrm{O} 3$ and O 4) and an N atom (N 1) constitute the basal plane, with an r.m.s deviation of 0.165 (1) \AA; the $C d$ atom is 0.248 (1) \AA above the plane towards atom N3. Atoms N3 and O1 are located at the two axial positions of the octahedron. The three trans angles for the $\mathrm{Cd}^{\mathrm{II}}$ polyhedron are 156.71 (8), 151.80 (7) and $145.97(8)^{\circ}$, and all the other angles around the central $\mathrm{Cd}^{\mathrm{II}}$ atom deviate significantly from 90°, indicating a severely distorted octahedral geometry (Table 1).

The average $\mathrm{Cd}-\mathrm{N}$ bond length is 2.287 (2) \AA, which is comparable with the $\mathrm{Cd}-\mathrm{N}$ (imine) bond distances [2.279 (18) and 2.309 (14) \AA] in the $\mathrm{Cd}^{\text {II }}$ complex with a Schiff base (Zhu et al., 2003). The mean $\mathrm{Cd}-\mathrm{O}$ distance of 2.366 (2) \AA lies in the normal $\mathrm{Cd}-\mathrm{O}$ range in cadmium carboxylate complexes. The $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2 \quad\left[55.54(7)^{\circ}\right]$ and $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4$

Received 30 September 2003
Accepted 13 October 2003
Online 23 October 2003

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

The crystal packing for (I), showing intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines.
[54.33 (7) ${ }^{\circ}$] angles are significantly narrower than the corresponding $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ angles [62.02(4) and $61.79(4)^{\circ}$] in the $\mathrm{Ni}^{\mathrm{II}}$-benzoate complex (Xia et al., 2003).

All the O atoms and the primary N atoms contribute to the formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link symmetry-related molecules to form a network.

Experimental

Cadmium 4-fluorobenzoate ($1 \mathrm{mmol}, 391 \mathrm{mg}$) and 2 -aminopyridine $(2.0 \mathrm{mmol}, 188 \mathrm{mg})$ were suspended in a mixed solvent of acetonitrile
and water $(v / v=1: 1,10 \mathrm{ml})$. The suspension was stirred for $c a 0.5 \mathrm{~h}$ and filtered. After keeping the filtrate in air for one week, large blue prismatic crystals were formed. They were filtered and washed three times with the same solvent mixture, and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 65%). Elemental analysis found: C 50.01, H $3.60, \mathrm{~N} 9.49 \%$; calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{CdF}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$: C 49.80, H 3.48, N 9.68\%.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \quad D_{x}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=578.84$
Monoclinic, $P 2_{1} / n$
$a=9.185$ (4) \AA 。
$b=11.737$ (5) \AA
$c=22.328$ (8) \AA
$\beta=95.167(6)^{\circ}$
$V=2397.3(16) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 5153 reflections
$\theta=2.5-26.2^{\circ}$
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, blue
$0.37 \times 0.32 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.717, T_{\max }=0.838$
12213 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.064$
$S=1.01$
4208 reflections
316 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 4208 \text { independent reflections } \\
& 3292 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-13 \rightarrow 13 \\
& l=-22 \rightarrow 26 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0299 P)^{2}\right. \\
& \quad+0.2894 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cd1-N1	$2.285(2)$	Cd1-O1	$2.339(2)$
Cd1-N3	$2.288(2)$	Cd1-O2	$2.369(2)$
Cd1-O3	$2.333(2)$	Cd1-O4	$2.421(2)$
N1-Cd1-N3	$97.23(8)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 2$	$156.71(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$97.53(8)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$55.54(7)$
N3-Cd1-O3	$102.12(9)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 4$	$151.80(7)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1$	$103.34(8)$	$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 4$	$88.23(8)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 1$	$145.97(8)$	$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4$	$54.33(7)$
$\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 1$	$101.71(8)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4$	$86.26(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$93.26(8)$	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4$	$113.61(7)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 2$	$96.89(8)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.86	2.02	$2.870(4)$	172
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.11	$2.958(3)$	169
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.86	2.12	$2.969(3)$	169
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.86	2.10	$2.914(3)$	157

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, 1-y,-z$.

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances of 0.83 and $0.96 \AA$, respectively. The $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$.

metal-organic papers

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002, and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Xia, D.-S., Wang, Y.-F., Liu, W.-J., Zeng, Q.-F., Wang, D.-Q. \& Zhu, H.-L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 311-312.

Zhu, H.-L., Shao, S.-C., Ma, J.-L., Qiu, X.-Y., Sun, L. \& Yang, S. (2003). Acta Cryst. E59, m843-m844.

